Create an account


Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[Tut] The Most Pythonic Way to Get N Largest and Smallest List Elements

#1
[Tut] The Most Pythonic Way to Get N Largest and Smallest List Elements

<div>
<div class="kk-star-ratings kksr-auto kksr-align-left kksr-valign-top" data-payload='{&quot;align&quot;:&quot;left&quot;,&quot;id&quot;:&quot;1651003&quot;,&quot;slug&quot;:&quot;default&quot;,&quot;valign&quot;:&quot;top&quot;,&quot;ignore&quot;:&quot;&quot;,&quot;reference&quot;:&quot;auto&quot;,&quot;class&quot;:&quot;&quot;,&quot;count&quot;:&quot;1&quot;,&quot;legendonly&quot;:&quot;&quot;,&quot;readonly&quot;:&quot;&quot;,&quot;score&quot;:&quot;5&quot;,&quot;starsonly&quot;:&quot;&quot;,&quot;best&quot;:&quot;5&quot;,&quot;gap&quot;:&quot;5&quot;,&quot;greet&quot;:&quot;Rate this post&quot;,&quot;legend&quot;:&quot;5\/5 - (1 vote)&quot;,&quot;size&quot;:&quot;24&quot;,&quot;title&quot;:&quot;The Most Pythonic Way to Get N Largest and Smallest List Elements&quot;,&quot;width&quot;:&quot;142.5&quot;,&quot;_legend&quot;:&quot;{score}\/{best} - ({count} {votes})&quot;,&quot;font_factor&quot;:&quot;1.25&quot;}'>
<div class="kksr-stars">
<div class="kksr-stars-inactive">
<div class="kksr-star" data-star="1" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="2" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="3" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="4" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="5" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
</p></div>
<div class="kksr-stars-active" style="width: 142.5px;">
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
</p></div>
</div>
<div class="kksr-legend" style="font-size: 19.2px;"> 5/5 – (1 vote) </div>
</p></div>
<p class="has-global-color-8-background-color has-background"><strong>Using <code>heapq.nlargest()</code> and <code>heapq.nsmallest()</code> is more efficient than sorting the entire list and then slicing it.</strong> Sorting takes <em>O(n log n)</em> time and slicing takes <em>O(N)</em> time, making the overall time complexity <em>O(n log n) + O(N)</em>. </p>
<p>However, <code>heapq.nlargest()</code> and <code>heapq.nsmallest()</code> have a time complexity of <em>O(n log N)</em>, which is more efficient, especially when <em>N</em> is much smaller than <em>n</em>. This is because these functions use a heap data structure to efficiently extract the <em>N</em> largest or smallest elements without sorting the entire list.</p>
<p>If you keep reading, I’ll show you the performance difference of these methods. Spoiler:</p>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" fetchpriority="high" width="594" height="451" src="https://blog.finxter.com/wp-content/uploads/2023/08/image-152.png" alt="" class="wp-image-1651006" srcset="https://blog.finxter.com/wp-content/uploads/2023/08/image-152.png 594w, https://blog.finxter.com/wp-content/uplo...00x228.png 300w" sizes="(max-width: 594px) 100vw, 594px" /></figure>
</div>
<p>Okay, let’s get started with the best and most efficient approach next: <img decoding="async" src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f447.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h2 class="wp-block-heading">Importing Heapq Module</h2>
<p>The <strong><code>heapq</code> module</strong> is a powerful tool in Python for handling heaps, more specifically min-heaps. It provides functions to perform operations on heap data structures efficiently. To begin working with this module, start by importing it in your Python script:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq</pre>
<p>Once you have successfully imported the <code>heapq</code> module, you can start leveraging its built-in functions, such as <code>heapq.nlargest()</code> and <code>heapq.nsmallest()</code>. These functions are particularly useful for extracting the n-largest or n-smallest items from a list.</p>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img loading="lazy" decoding="async" width="750" height="750" src="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_9a454e93-02d0-48e0-97a9-ef4f75666ae9.png" alt="" class="wp-image-1651013" srcset="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_9a454e93-02d0-48e0-97a9-ef4f75666ae9.png 750w, https://blog.finxter.com/wp-content/uplo...00x300.png 300w, https://blog.finxter.com/wp-content/uplo...50x150.png 150w" sizes="(max-width: 750px) 100vw, 750px" /></figure>
</div>
<p>Here’s a simple example that demonstrates how to use these functions:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="7,12" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq sample_list = [1, 3, 7, 21, -90, 67, 42, 12] # Find 3 largest elements
largest_elements = heapq.nlargest(3, sample_list)
print(largest_elements) # Output: [67, 42, 21] # Find 3 smallest elements
smallest_elements = heapq.nsmallest(3, sample_list)
print(smallest_elements) # Output: [-90, 1, 3]
</pre>
<p>Keep in mind that when working with lists, you should always make sure that the object you’re working with is indeed a list. You can do this by utilizing the method described in this <a href="https://blog.finxter.com/how-to-check-if-an-object-is-of-type-list-in-python/">guide on checking if an object is of type list in Python</a>.</p>
<p>When iterating through elements in a list, a common pattern to use is the range and len functions in combination. This can be achieved using the <code>range(len())</code> construct. Here’s an <a href="https://blog.finxter.com/how-to-use-rangelen-in-python/">article that explains how to use <code>range(len())</code> in Python</a>.</p>
<p>By incorporating the <code>heapq</code> module and following best practices for working with lists, you’ll be well-equipped to extract the n-largest or n-smallest elements from any list in your Python projects.</p>
<p class="has-base-2-background-color has-background"><strong><img decoding="async" src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4a1.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> Interesting Factoid: </strong></p>
<p>A heap is a special tree-based structure that always keeps the smallest or largest element at the root, making it super efficient for operations like insertions, deletions, and finding the minimum or maximum element. </p>
<p>Imagine you’re at a concert, and the VIP section (the root of the heap) always needs to have the most important celebrity. </p>
<p>As new celebrities arrive or leave, the security efficiently rearranges the VIP section to always have the most important celebrity. This is similar to how a heap operates, always rearranging efficiently to keep the smallest or largest element at the root. </p>
<p>This efficiency (O(log n) for insertions and deletions, O(1) for finding min or max) makes heaps much faster than other structures like arrays or linked lists for certain applications, such as priority queues and scheduling tasks.</p>
<h2 class="wp-block-heading">N-Largest Elements</h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img loading="lazy" decoding="async" width="750" height="750" src="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_06e01ffa-4311-4911-b9a7-aae776e5974d.png" alt="" class="wp-image-1651011" srcset="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_06e01ffa-4311-4911-b9a7-aae776e5974d.png 750w, https://blog.finxter.com/wp-content/uplo...00x300.png 300w, https://blog.finxter.com/wp-content/uplo...50x150.png 150w" sizes="(max-width: 750px) 100vw, 750px" /></figure>
</div>
<h3 class="wp-block-heading">Using Heapq.Nlargest Function</h3>
<p class="has-global-color-8-background-color has-background">One of the most efficient ways to obtain the N largest elements from a list in Python is by using the <code>heapq.nlargest()</code> function from the <strong><code>heapq</code></strong> module. This method ensures optimal performance and consumes less time when compared to sorting the list and selecting specific items. </p>
<p>Here’s how to use this function:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq lst = [50, 30, 20, 10, 40, 60, 90, 70, 80]
n = 3 largest_ele = heapq.nlargest(n, lst)
print(largest_ele)
</pre>
<p>Output:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">[90, 80, 70]
</pre>
<p>In this example, the <code>heapq.nlargest()</code> function returns the 3 largest elements from the given list.</p>
<h3 class="wp-block-heading">Applying Key Parameter</h3>
<p class="has-global-color-8-background-color has-background">The <code>heapq.nlargest()</code> function also provides an optional <strong><code>key</code></strong> parameter. This parameter allows you to define a custom function to determine the order in which elements are ranked. For instance, when working with a list of dictionaries, you might require to find the N largest elements based on a specific attribute. </p>
<p>See the following example:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq data = [ {"name": "Alice", "age": 30}, {"name": "Bob", "age": 35}, {"name": "Charlie", "age": 25}, {"name": "David", "age": 20}, {"name": "Eve", "age": 40},
] n = 2 oldest_people = heapq.nlargest(n, data, key=lambda x: x["age"])
print(oldest_people)
</pre>
<p>Output:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">[{'name': 'Eve', 'age': 40}, {'name': 'Bob', 'age': 35}]
</pre>
<p>In this example, we define a lambda function to extract the “<code>age</code>” attribute from each dictionary. The <code>heapq.nlargest()</code> function then returns the 2 oldest people from the given list based on this attribute.</p>
<p>When dealing with lists in Python, it is essential to <a href="https://blog.finxter.com/python-list-find-element/">find elements</a> efficiently and <a href="https://blog.finxter.com/how-to-create-a-python-list-of-size-n/">create lists of a specific size</a>. Using <code>heapq.nlargest()</code> with the key parameter helps achieve these tasks.</p>
<h2 class="wp-block-heading">N-Smallest Elements</h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="750" height="750" src="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_f0dd6ff2-c736-4ad1-9dbc-b4a45bb9749b.png" alt="" class="wp-image-1651014" srcset="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_f0dd6ff2-c736-4ad1-9dbc-b4a45bb9749b.png 750w, https://blog.finxter.com/wp-content/uplo...00x300.png 300w, https://blog.finxter.com/wp-content/uplo...50x150.png 150w" sizes="(max-width: 750px) 100vw, 750px" /></figure>
</div>
<h3 class="wp-block-heading">Using Heapq.nsmallest Function</h3>
<p class="has-global-color-8-background-color has-background">The <code>heapq.nsmallest()</code> function is an efficient way to extract the n smallest elements from a list in Python. This function is part of the <a href="https://note.nkmk.me/en/python-max-min-heapq-nlargest-nsmallest/"><code>heapq</code> module</a> and returns a list containing the n smallest elements from the given <a href="https://blog.finxter.com/iterators-iterables-and-itertools/">iterable</a>. </p>
<p>For example:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq nums = [34, 1, 25, 16, -7, 85, 43]
n = 3
smallest_ele = heapq.nsmallest(n, nums) print(smallest_ele) # Output: [-7, 1, 16]
</pre>
<p>With just a few lines of code, the <code>heapq.nsmallest()</code> function gives you the desired output. It doesn’t modify the original list and provides fast performance, even for large data sets.</p>
<h3 class="wp-block-heading">Applying Key Parameter</h3>
<p class="has-global-color-8-background-color has-background">Heapq’s <code>nsmallest</code> function also supports the <code>key</code> parameter, which allows you to customize the sorting criteria. This is useful when dealing with more complex data structures, like dictionaries or objects. The <code>key</code> parameter accepts a function, and the elements in the iterable will be ranked based on the returned value of that function. </p>
<p>This way, you can <a href="https://blog.finxter.com/how-to-get-specific-elements-from-a-list/">extract specific elements</a> from a list according to your requirements. </p>
<p>Here’s an example using a list of dictionaries:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq data = [ {"name": "Alice", "age": 30}, {"name": "Bob", "age": 25}, {"name": "Charlie", "age": 35},
]
n = 2 # Get the n smallest by age
smallest_age = heapq.nsmallest(n, data, key=lambda x: x["age"]) print(smallest_age)
# Output: [{'name': 'Bob', 'age': 25}, {'name': 'Alice', 'age': 30}]
</pre>
<p>This example demonstrates retrieving the n smallest elements based on the age property in a list of dictionaries. The <code>key</code> parameter takes a <a href="https://blog.finxter.com/a-simple-introduction-of-the-lambda-function-in-python/">lambda function</a> that returns the value to be used for comparison. The result will be a list of dictionaries with the n smallest ages.</p>
<p>By using the <code>heapq.nsmallest()</code> function and the optional <code>key</code> parameter, you can quickly and efficiently obtain the n smallest elements from a list in Python.</p>
<h2 class="wp-block-heading">Alternative Techniques</h2>
<h3 class="wp-block-heading">Sort and Slice Method</h3>
<p class="has-global-color-8-background-color has-background">One way to find the n-largest/smallest elements from a list in Python is by using the sort and slice method. First, sort the list in ascending or descending order, depending on whether you want to find the smallest or largest elements. Then, use slicing to extract the desired elements. </p>
<p>For example:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">my_list = [4, 5, 1, 2, 9]
n = 3
my_list.sort() # Smallest elements
n_smallest = my_list[:n] # Largest elements
n_largest = my_list[-n:]
</pre>
<p>This method might not be as efficient as using the <a href="https://note.nkmk.me/en/python-max-min-heapq-nlargest-nsmallest/"><code>heapq</code> module</a>, but it is simple and easy to understand.</p>
<h3 class="wp-block-heading">For Loop and Remove Method</h3>
<p class="has-global-color-8-background-color has-background">Another approach is to use a for loop and the remove method. Iterate through the input list <code>n</code> times, and in each iteration, find the minimum or maximum element (depending on whether you need the smallest or largest elements), and then remove it from the list. Append the extracted element to a new list. </p>
<p>A sample implementation can be the following:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">my_list = [4, 5, 1, 2, 9]
n = 2
n_smallest = [] for i in range(n): min_element = min(my_list) my_list.remove(min_element) n_smallest.append(min_element) n_largest = []
for i in range(n): max_element = max(my_list) my_list.remove(max_element) n_largest.append(max_element)
</pre>
<p>While this method may not be as efficient as other techniques, like using <a href="https://blog.finxter.com/how-to-extract-numbers-from-a-string-in-python/">built-in functions</a> or the <code>heapq</code> module, it provides more flexibility and control over the process. Additionally, it can be useful when working with unsorted lists or when you need to extract elements with specific characteristics.</p>
<p class="has-base-2-background-color has-background"><img decoding="async" src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4a1.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> <strong>Recommended</strong>: <a href="https://blog.finxter.com/python-list-sort/">Python List <code>sort()</code> – The Ultimate Guide</a></p>
<h2 class="wp-block-heading">Performance and Efficiency</h2>
<p>When working with large datasets, performance and efficiency are crucial. Extracting the n-largest or n-smallest elements from a list can impact the performance of your project. Python offers several ways to achieve this, each with different efficiencies and trade-offs.</p>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="750" height="750" src="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_1e690d3b-1659-4874-8ff1-b9311fe87b31.png" alt="" class="wp-image-1651015" srcset="https://blog.finxter.com/wp-content/uploads/2023/08/Finxter_computer_science_heap_and_binary_tree_1e690d3b-1659-4874-8ff1-b9311fe87b31.png 750w, https://blog.finxter.com/wp-content/uplo...00x300.png 300w, https://blog.finxter.com/wp-content/uplo...50x150.png 150w" sizes="(max-width: 750px) 100vw, 750px" /></figure>
</div>
<p class="has-global-color-8-background-color has-background">One method is to use the <code>heapq</code> module, which provides an efficient implementation of the heap queue algorithm. This module offers the <code>heapq.nlargest()</code> and <code>heapq.nsmallest()</code> functions, which efficiently retrieve n-largest or n-smallest elements from an iterable. </p>
<p><strong>These functions have a better performance compared to sorting the entire list and slicing, as they only maintain a heap of the desired size, making them ideal for large datasets.</strong></p>
<p>It’s important to note that the performance benefits of the <code>heapq</code> module come at the cost of reduced readability. Working with heap queues can be slightly more complex compared to using the built-in <code><a href="https://blog.finxter.com/python-sorted-function/">sorted()</a></code> or <code><a href="https://blog.finxter.com/python-list-sort/">sort()</a></code> functions, but in many cases, the increase in efficiency outweighs the readability trade-off.</p>
<p>Another approach to improve performance when working with large lists is to leverage the power of <a href="https://blog.finxter.com/how-to-convert-a-list-to-a-numpy-array/">NumPy arrays</a>. NumPy arrays offer optimized operations and can be more efficient than working with standard Python lists. However, keep in mind that NumPy arrays have additional dependencies and may not always be suitable for every situation.</p>
<p>Lastly, managing performance and efficiency might also involve working with dictionaries. Knowing how to efficiently <a href="https://blog.finxter.com/how-to-get-first-key-value-in-a-dictionary/">get the first key-value</a> pair in a dictionary, for instance, can positively impact the overall efficiency of your code.</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq my_list = [9, 5, 3, 8, 1]
n = 2 largest_elements = heapq.nlargest(n, my_list)
print(largest_elements) # Output: [9, 8]
</pre>
<p>In conclusion, choosing the appropriate method for extracting n-largest or n-smallest elements from a list depends on your specific requirements and dataset size. While the <code>heapq</code> module provides an efficient solution, readability and ease of use should also be considered when deciding which implementation to use.</p>
<p>To illustrate the performance difference between sorting and using <code>heapq.nlargest</code> and <code>heapq.nsmallest</code>, let’s consider an example where we have a large list of random numbers and we want to extract the N largest and smallest numbers from the list.</p>
<p>We will compare the time taken by the following three methods:</p>
<ol>
<li>Sorting the entire list and then slicing it to get the N largest and smallest numbers.</li>
<li>Using <code>heapq.nlargest</code> and <code>heapq.nsmallest</code> to get the N largest and smallest numbers.</li>
<li>Using <code>sorted</code> function with <code>key</code> parameter.</li>
</ol>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="594" height="451" src="https://blog.finxter.com/wp-content/uploads/2023/08/image-151.png" alt="" class="wp-image-1651005" srcset="https://blog.finxter.com/wp-content/uploads/2023/08/image-151.png 594w, https://blog.finxter.com/wp-content/uplo...00x228.png 300w" sizes="(max-width: 594px) 100vw, 594px" /></figure>
</div>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import random
import time
import heapq
import matplotlib.pyplot as plt # Generate a list of 10^6 random numbers
numbers = random.sample(range(1, 10**7), 10**6)
N = 100 # Method 1: Sort and slice
start_time = time.time()
sorted_numbers = sorted(numbers)
largest_numbers = sorted_numbers[-N:]
smallest_numbers = sorted_numbers[:N]
time_sort_slice = time.time() - start_time # Method 2: heapq.nlargest and heapq.nsmallest
start_time = time.time()
largest_numbers = heapq.nlargest(N, numbers)
smallest_numbers = heapq.nsmallest(N, numbers)
time_heapq = time.time() - start_time # Method 3: sorted with key parameter
start_time = time.time()
largest_numbers = sorted(numbers, reverse=True, key=lambda x: x)[:N]
smallest_numbers = sorted(numbers, key=lambda x: x)[:N]
time_sorted_key = time.time() - start_time # Plot the results
methods = ['Sort and Slice', 'heapq.nlargest/nsmallest', 'sorted with key']
times = [time_sort_slice, time_heapq, time_sorted_key] plt.bar(methods, times)
plt.ylabel('Time (seconds)')
plt.title('Performance Comparison')
plt.show() print('Time taken by Sort and Slice:', time_sort_slice)
print('Time taken by heapq.nlargest/nsmallest:', time_heapq)
print('Time taken by sorted with key:', time_sorted_key)
</pre>
<p>In this code, we first generate a list of 10^6 random numbers and then compare the time taken by the three methods to extract the 100 largest and smallest numbers from the list. We then plot the results using <code>matplotlib</code>.</p>
<h2 class="wp-block-heading">Frequently Asked Questions</h2>
<h3 class="wp-block-heading">How to get smallest and largest numbers in a list using Python?</h3>
<p>To get the smallest and largest numbers in a list, you can use the built-in <code><a href="https://blog.finxter.com/python-min/">min()</a></code> and <code><a href="https://blog.finxter.com/python-max/">max()</a></code> functions:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">my_list = [4, 2, 9, 7, 5]
smallest = min(my_list)
largest = max(my_list)
</pre>
<h3 class="wp-block-heading">Find nth largest or smallest element in a list</h3>
<p>You can use the <code>heapq.nlargest()</code> and <code>heapq.nsmallest()</code> methods of the <code>heapq</code> module to find the nth largest or smallest elements in a list:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq my_list = [4, 2, 9, 7, 5]
nth_largest = heapq.nlargest(3, my_list)
nth_smallest = heapq.nsmallest(3, my_list)
</pre>
<h3 class="wp-block-heading">Locating index of nth largest value in a Python list</h3>
<p>To find the index of the nth largest value in a list, you can use a combination of <code>heapq.nlargest()</code> and <code>list.index()</code>:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq my_list = [4, 2, 9, 7, 5]
nth_largest_value = heapq.nlargest(2, my_list)[1]
index = my_list.index(nth_largest_value)
</pre>
<h3 class="wp-block-heading">Using for loop to find largest item in a list</h3>
<p>A simple for loop can also be used to find the largest item in a list:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">my_list = [4, 2, 9, 7, 5]
largest = my_list[0] for num in my_list: if num > largest: largest = num
</pre>
<h3 class="wp-block-heading">Find the second smallest number in a list using Python</h3>
<p>To find the second smallest number in a list, you can sort the list and pick the second element:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">my_list = [4, 2, 9, 7, 5]
sorted_list = sorted(my_list)
second_smallest = sorted_list[1]
</pre>
<h3 class="wp-block-heading">Program to get two largest values from a list</h3>
<p>Here’s a simple program to get the two largest values from a list using <code>heapq.nlargest()</code>:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="generic" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import heapq my_list = [4, 2, 9, 7, 5]
two_largest_values = heapq.nlargest(2, my_list)
</pre>
<p>The post <a rel="nofollow" href="https://blog.finxter.com/the-most-pythonic-way-to-get-n-largest-and-smallest-list-elements/">The Most Pythonic Way to Get N Largest and Smallest List Elements</a> appeared first on <a rel="nofollow" href="https://blog.finxter.com">Be on the Right Side of Change</a>.</p>
</div>


https://www.sickgaming.net/blog/2023/08/...-elements/
Reply



Forum Jump:


Users browsing this thread:
3 Guest(s)

Forum software by © MyBB Theme © iAndrew 2016