Sick Gaming
[Tut] Python Web Scraping: From URL to CSV in No Time - Printable Version

+- Sick Gaming (https://www.sickgaming.net)
+-- Forum: Programming (https://www.sickgaming.net/forum-76.html)
+--- Forum: Python (https://www.sickgaming.net/forum-83.html)
+--- Thread: [Tut] Python Web Scraping: From URL to CSV in No Time (/thread-101019.html)



[Tut] Python Web Scraping: From URL to CSV in No Time - xSicKxBot - 04-24-2023

Python Web Scraping: From URL to CSV in No Time

<div>
<div class="kk-star-ratings kksr-auto kksr-align-left kksr-valign-top" data-payload='{&quot;align&quot;:&quot;left&quot;,&quot;id&quot;:&quot;1313474&quot;,&quot;slug&quot;:&quot;default&quot;,&quot;valign&quot;:&quot;top&quot;,&quot;ignore&quot;:&quot;&quot;,&quot;reference&quot;:&quot;auto&quot;,&quot;class&quot;:&quot;&quot;,&quot;count&quot;:&quot;1&quot;,&quot;legendonly&quot;:&quot;&quot;,&quot;readonly&quot;:&quot;&quot;,&quot;score&quot;:&quot;4&quot;,&quot;starsonly&quot;:&quot;&quot;,&quot;best&quot;:&quot;5&quot;,&quot;gap&quot;:&quot;5&quot;,&quot;greet&quot;:&quot;Rate this post&quot;,&quot;legend&quot;:&quot;4\/5 - (1 vote)&quot;,&quot;size&quot;:&quot;24&quot;,&quot;title&quot;:&quot;Python Web Scraping: From URL to CSV in No Time&quot;,&quot;width&quot;:&quot;113.5&quot;,&quot;_legend&quot;:&quot;{score}\/{best} - ({count} {votes})&quot;,&quot;font_factor&quot;:&quot;1.25&quot;}'>
<div class="kksr-stars">
<div class="kksr-stars-inactive">
<div class="kksr-star" data-star="1" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="2" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="3" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="4" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" data-star="5" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
</p></div>
<div class="kksr-stars-active" style="width: 113.5px;">
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
<div class="kksr-star" style="padding-right: 5px">
<div class="kksr-icon" style="width: 24px; height: 24px;"></div>
</p></div>
</p></div>
</div>
<div class="kksr-legend" style="font-size: 19.2px;"> 4/5 – (1 vote) </div>
</p></div>
<h2 class="wp-block-heading">Setting up the Environment</h2>
<p>Before diving into web scraping with Python, set up your environment by installing the necessary libraries.</p>
<p>First, install the following libraries: <code><a rel="noreferrer noopener" href="https://blog.finxter.com/how-to-install-requests-in-python/" data-type="post" data-id="35966" target="_blank">requests</a></code>, <code><a rel="noreferrer noopener" href="https://blog.finxter.com/how-to-install-beautifulsoup4-in-python/" data-type="post" data-id="457056" target="_blank">BeautifulSoup</a></code>, and <code><a rel="noreferrer noopener" href="https://blog.finxter.com/how-to-install-pandas-in-python/" data-type="post" data-id="35926" target="_blank">pandas</a></code>. These packages play a crucial role in web scraping, each serving different purposes.<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/2728.png" alt="✨" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p>To install these libraries, click on the previously provided links for a full guide (including troubleshooting) or simply run the following commands:</p>
<pre class="wp-block-preformatted"><code>pip install requests
pip install beautifulsoup4
pip install pandas</code>
</pre>
<p>The <code>requests</code> library will be used to make HTTP requests to websites and download the HTML content. It simplifies the process of fetching web content in Python.</p>
<p><code>BeautifulSoup</code> is a fantastic library that helps extract data from the HTML content fetched from websites. It makes navigating, searching, and modifying HTML easy, making web scraping straightforward and convenient.</p>
<p><code>Pandas</code> will be helpful in data manipulation and organizing the scraped data into a CSV file. It provides powerful tools for working with structured data, making it popular among data scientists and web scraping enthusiasts. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f43c.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h2 class="wp-block-heading">Fetching and Parsing URL</h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img loading="lazy" decoding="async" width="743" height="495" src="https://blog.finxter.com/wp-content/uploads/2023/04/image-230.png" alt="" class="wp-image-1313580" srcset="https://blog.finxter.com/wp-content/uploads/2023/04/image-230.png 743w, https://blog.finxter.com/wp-content/uploads/2023/04/image-230-300x200.png 300w" sizes="(max-width: 743px) 100vw, 743px" /></figure>
</div>
<p>Next, you’ll learn how to fetch and parse URLs using Python to <strong>scrape data and save it as a CSV file</strong>. We will cover sending HTTP requests, handling errors, and utilizing libraries to make the process efficient and smooth. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f60a.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Sending HTTP Requests</h3>
<p>When fetching content from a URL, Python offers a powerful library known as the <code>requests</code> library. It allows users to send HTTP requests, such as GET or POST, to a specific URL, obtain a response, and parse it for information. </p>
<p>We will use the <code>requests</code> library to help us fetch data from our desired URL. </p>
<p>For example:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import requests
response = requests.get('https://example.com/data.csv')</pre>
<p>The variable <code>response</code> will store the server’s response, including the data we want to scrape. From here, we can access the content using <code>response.content</code>, which will return the raw data in <a href="https://blog.finxter.com/python-bytes-vs-bytearray/" data-type="post" data-id="870390" target="_blank" rel="noreferrer noopener">bytes</a> format. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f310.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Handling HTTP Errors</h3>
<p>Handling HTTP errors while fetching data from URLs ensures a smooth experience and prevents unexpected issues. The <code>requests</code> library makes error handling easy by providing methods to check whether the request was successful. </p>
<p>Here’s a simple example:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import requests
response = requests.get('https://example.com/data.csv')
response.raise_for_status()</pre>
<p>The <code>raise_for_status()</code> method will raise an exception if there’s an HTTP error, such as a 404 Not Found or 500 Internal Server Error. This helps us ensure that our script doesn’t continue to process erroneous data, allowing us to gracefully handle any issues that may arise. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f6e0.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p>With these tools, you are now better equipped to fetch and parse URLs using Python. This will enable you to <strong>effectively scrape data and save it as a CSV</strong> file. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f40d.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h2 class="wp-block-heading">Extracting Data from HTML</h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="743" height="499" src="https://blog.finxter.com/wp-content/uploads/2023/04/image-231.png" alt="" class="wp-image-1313581" srcset="https://blog.finxter.com/wp-content/uploads/2023/04/image-231.png 743w, https://blog.finxter.com/wp-content/uploads/2023/04/image-231-300x201.png 300w" sizes="(max-width: 743px) 100vw, 743px" /></figure>
</div>
<p>In this section, we’ll discuss extracting data from HTML using Python. The focus will be on utilizing the BeautifulSoup library, locating elements by their tags, and attributes. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f60a.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Using BeautifulSoup</h3>
<p>BeautifulSoup is a popular Python library that simplifies web scraping tasks by making it easy to parse and navigate through HTML. To get started, import the library and request the page content you want to scrape, then create a BeautifulSoup object to parse the data:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">from bs4 import BeautifulSoup
import requests url = "example_website"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
</pre>
<p>Now you have a BeautifulSoup object and can start extracting data from the HTML. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f680.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Locating Elements by Tags and Attributes</h3>
<p>BeautifulSoup provides various methods to locate elements by their tags and attributes. Some common methods include <code>find()</code>, <code>find_all()</code>, <code>select()</code>, and <code>select_one()</code>. </p>
<p>Let’s see these methods in action:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group=""># Find the first &lt;span> tag
span_tag = soup.find("span") # Find all &lt;span> tags
all_span_tags = soup.find_all("span") # Locate elements using CSS selectors
title = soup.select_one("title") # Find all &lt;a> tags with the "href" attribute
links = soup.find_all("a", {"href": True})
</pre>
<p>These methods allow you to easily navigate and extract data from an HTML structure. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f9d0.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p>Once you have located the HTML elements containing the needed data, you can extract the text and attributes. </p>
<p>Here’s how:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group=""># Extract text from a tag
text = span_tag.text # Extract an attribute value
url = links[0]["href"]
</pre>
<p>Finally, to save the extracted data into a CSV file, you can use Python’s built-in <code>csv</code> module. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f603.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import csv # Writing extracted data to a CSV file
with open("output.csv", "w", newline="") as csvfile: writer = csv.writer(csvfile) writer.writerow(["Index", "Title"]) for index, link in enumerate(links, start=1): writer.writerow([index, link.text])
</pre>
<p>Following these steps, you can successfully extract data from HTML using Python and BeautifulSoup, and save it as a CSV file. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f389.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p class="has-base-2-background-color has-background"><img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4a1.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> <strong>Recommended</strong>: <a href="https://blog.finxter.com/basketball-statistics-page-scraping-using-python-and-beautifulsoup/" data-type="post" data-id="1081082" target="_blank" rel="noreferrer noopener">Basketball Statistics – Page Scraping Using Python and BeautifulSoup</a></p>
<h2 class="wp-block-heading">Organizing Data</h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="743" height="531" src="https://blog.finxter.com/wp-content/uploads/2023/04/image-232.png" alt="" class="wp-image-1313582" srcset="https://blog.finxter.com/wp-content/uploads/2023/04/image-232.png 743w, https://blog.finxter.com/wp-content/uploads/2023/04/image-232-300x214.png 300w" sizes="(max-width: 743px) 100vw, 743px" /></figure>
</div>
<p>This section explains how to <a rel="noreferrer noopener" href="https://blog.finxter.com/how-to-create-a-dictionary-from-two-lists/" data-type="post" data-id="316802" target="_blank">create a dictio</a>nary to store the scraped data and how to write the organized data into a CSV file. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f60a.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Creating a Dictionary</h3>
<p>Begin by defining an empty dictionary that will store the extracted data elements. </p>
<p>In this case, the focus is on quotes, authors, and any associated tags. Each extracted element should have its key, and the value should be a list that contains individual instances of that element. </p>
<p>For example:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">
data = { "quotes": [], "authors": [], "tags": []
}
</pre>
<p>As you scrape the data, append each item to its respective <a href="https://blog.finxter.com/python-lists/" data-type="post" data-id="7332" target="_blank" rel="noreferrer noopener">list</a>. This approach makes the information easy to index and retrieve when needed. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4da.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Working with DataFrames and Pandas</h3>
<p>Once the data is stored in a dictionary, it’s time to <a href="https://blog.finxter.com/dictionary-of-lists-to-dataframe-python-conversion/" data-type="post" data-id="1296622" target="_blank" rel="noreferrer noopener">convert it into a dataframe</a>. Using the <a href="https://pandas.pydata.org/" target="_blank" rel="noreferrer noopener">Pandas</a> library, it’s easy to transform the dictionary into a dataframe where the keys become the column names and the respective lists become the rows. </p>
<p>Simply use the following command:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import pandas as pd df = pd.DataFrame(data)</pre>
<h3 class="wp-block-heading">Exporting Data to a CSV File</h3>
<p>With the dataframe prepared, it’s time to write it to a CSV file. Thankfully, Pandas comes to the rescue once again. Using the dataframe’s built-in <code><a href="https://blog.finxter.com/convert-html-table-to-csv-in-python/" data-type="post" data-id="590862" target="_blank" rel="noreferrer noopener">.to_csv()</a></code> method, it’s possible to create a CSV file from the dataframe, like this:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">
df.to_csv('scraped_data.csv', index=False)
</pre>
<p>This command will generate a CSV file called <code>'scraped_data.csv'</code> containing the organized data with columns for quotes, authors, and tags. The <code>index=False</code> parameter ensures that the dataframe’s index isn’t added as an additional column. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4dd.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p class="has-base-2-background-color has-background"><img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4a1.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> <strong>Recommended</strong>: <a href="https://blog.finxter.com/read-a-csv-file-to-a-pandas-dataframe/" data-type="post" data-id="440655" target="_blank" rel="noreferrer noopener">17 Ways to Read a CSV File to a Pandas DataFrame</a></p>
<p>And there you have it—a neat, organized CSV file containing your scraped data!</p>
<h2 class="wp-block-heading">Handling Pagination</h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="743" height="575" src="https://blog.finxter.com/wp-content/uploads/2023/04/image-233.png" alt="" class="wp-image-1313583" srcset="https://blog.finxter.com/wp-content/uploads/2023/04/image-233.png 743w, https://blog.finxter.com/wp-content/uploads/2023/04/image-233-300x232.png 300w" sizes="(max-width: 743px) 100vw, 743px" /></figure>
</div>
<p>This section will discuss how to handle pagination while scraping data from multiple URLs using Python to save the extracted content in a CSV format. It is essential to manage pagination effectively because most websites display their content across several pages.<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4c4.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Looping Through Web Pages</h3>
<p>Looping through web pages requires the developer to identify a pattern in the URLs, which can assist in iterating over them seamlessly. Typically, this pattern would include the page number as a variable, making it easy to adjust during the scraping process.<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f501.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p>Once the pattern is identified, you can use a for loop to iterate over a range of page numbers. For each iteration, update the URL with the page number and then proceed with the scraping process. This method allows you to extract data from multiple pages systematically.<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f5a5.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p>For instance, let’s consider that the base URL for every page is <code><em>"https://www.example.com/listing?page="</em></code>, where the page number is appended to the end. </p>
<p>Here is a Python example that demonstrates handling pagination when working with such URLs:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import requests
from bs4 import BeautifulSoup
import csv base_url = "https://www.example.com/listing?page=" with open("scraped_data.csv", "w", newline="") as csvfile: csv_writer = csv.writer(csvfile) csv_writer.writerow(["Data_Title", "Data_Content"]) # Header row for page_number in range(1, 6): # Loop through page numbers 1 to 5 url = base_url + str(page_number) response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") # TODO: Add scraping logic here and write the content to CSV file.<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f40d.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> </pre>
<p>In this example, the script iterates through the first five pages of the website and writes the scraped content to a CSV file. Note that you will need to implement the actual scraping logic (e.g., extracting the desired content using Beautiful Soup) based on the website’s structure.<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f310.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p>Handling pagination with Python allows you to collect more comprehensive data sets<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4be.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" />, improving the overall success of your web scraping efforts. Make sure to respect the website’s <code>robots.txt</code> rules and rate limits to ensure responsible data collection.<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f916.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h2 class="wp-block-heading">Exporting Data to CSV</h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="743" height="546" src="https://blog.finxter.com/wp-content/uploads/2023/04/image-234.png" alt="" class="wp-image-1313584" srcset="https://blog.finxter.com/wp-content/uploads/2023/04/image-234.png 743w, https://blog.finxter.com/wp-content/uploads/2023/04/image-234-300x220.png 300w" sizes="(max-width: 743px) 100vw, 743px" /></figure>
</div>
<p>You can export web scraping data to a CSV file in Python using the Python CSV module and the Pandas <code>to_csv</code> function. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f603.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> Both approaches are widely used and efficiently handle large amounts of data.</p>
<h3 class="wp-block-heading">Python CSV Module</h3>
<p>The Python CSV module is a built-in library that offers functionalities to read from and write to CSV files. It is simple and easy to use<img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f44d.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" />. To begin with, first, import the <code>csv</code> module.</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import csv
</pre>
<p>To write the scraped data to a CSV file, <a href="https://blog.finxter.com/python-open-function/" data-type="post" data-id="24793" target="_blank" rel="noreferrer noopener">open</a> the file in write mode (<code>'w'</code>) with a specified file name, create a <a href="https://blog.finxter.com/write-python-dict-to-csv-columns-keys-first-values-second-column/" data-type="post" data-id="570680" target="_blank" rel="noreferrer noopener">CSV writer</a> object, and write the data using the <code>writerow()</code> or <code>writerows()</code> methods as required.</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">with open('data.csv', 'w', newline='') as file: writer = csv.writer(file) writer.writerow(["header1", "header2", "header3"]) writer.writerows(scraped_data)
</pre>
<p>In this example, the header row is written first, followed by the rows of data obtained through web scraping. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f60a.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<h3 class="wp-block-heading">Using Pandas to_csv()</h3>
<p>Another alternative is the powerful library Pandas, often used in data manipulation and analysis. To use it, start by importing the Pandas library.</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">import pandas as pd
</pre>
<p>Pandas offers the <code>to_csv()</code> method, which can be applied to a DataFrame. If you have web-scraped data and stored it in a DataFrame, you can easily export it to a CSV file with the <code>to_csv()</code> method, as shown below:</p>
<pre class="EnlighterJSRAW" data-enlighter-language="python" data-enlighter-theme="" data-enlighter-highlight="" data-enlighter-linenumbers="" data-enlighter-lineoffset="" data-enlighter-title="" data-enlighter-group="">dataframe.to_csv('data.csv', index=False)
</pre>
<p>In this example, the index parameter is set to <code>False</code> to exclude the DataFrame index from the CSV file. <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4ca.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> </p>
<p>The Pandas library also provides options for handling missing values, date formatting, and customizing separators and delimiters, making it a versatile choice for data export.</p>
<h2 class="wp-block-heading">10 Minutes to Pandas in 5 Minutes </h2>
<div class="wp-block-image">
<figure class="aligncenter size-full"><img decoding="async" loading="lazy" width="743" height="495" src="https://blog.finxter.com/wp-content/uploads/2023/04/image-235.png" alt="" class="wp-image-1313585" srcset="https://blog.finxter.com/wp-content/uploads/2023/04/image-235.png 743w, https://blog.finxter.com/wp-content/uploads/2023/04/image-235-300x200.png 300w" sizes="(max-width: 743px) 100vw, 743px" /></figure>
</div>
<p>If you’re just getting started with Pandas, I’d recommend you check out our free blog guide (it’s only 5 minutes!): <img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f43c.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /></p>
<p class="has-base-2-background-color has-background"><img src="https://s.w.org/images/core/emoji/14.0.0/72x72/1f4a1.png" alt="?" class="wp-smiley" style="height: 1em; max-height: 1em;" /> <strong>Recommended</strong>: <a href="https://blog.finxter.com/pandas-quickstart/" data-type="post" data-id="16511" target="_blank" rel="noreferrer noopener">5 Minutes to Pandas — A Simple Helpful Guide to the Most Important Pandas Concepts (+ Cheat Sheet)</a></p>
</div>


https://www.sickgaming.net/blog/2023/04/23/python-web-scraping-from-url-to-csv-in-no-time/